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The major highlights of this presentation are as follows:

i. A brief introduction to fractional calculus and some methodologies.

ii. Basic idea of the Non-standard finite difference scheme

iii. Solution of a simple fractional-order single population growth model
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Introduction

In applied mathematics and mathematical analysis, fractional derivative is a
derivative of any arbitrary order, real or complex.

The concept of a fractional derivative was coined by the famous mathematician
Leibnitz in 1695 in his letter to L’Hopital.

The new theory has turned out to be very attractive to mathematicians as well as
physicists, biologists, engineers, and economists.

In recent years, the Fractional Calculus (FC) draws increasing attention due to its
applications in many fields.

Various types of fractional derivatives have been studied: Riemann-Liouville,
Caputo, Hadamard, Erdelyi-Kober, Grunwald-Letnikov, Marchaud, and Riesz,
Caputo-Fabrizio, Atangana-Baleanu, just to mention few.

The fractional derivatives have their advantages and disadvantages.

In fractional calculus, the fractional derivatives are defined via fractional integrals.

The real physical interpretation of fractional derivative in real life problems is still
an open problem
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Advantages of the fractional derivatives

The kernel function of fractional derivative is called memory function, although it
does not reflect any physical process. Classical integer-order ordinary differential
equations have no memory, because their solution does not depend on the previous
instant.

One of the great advantages of the Caputo fractional derivative is that it allows
initial and boundary conditions to be included in the formulation of the problem.

In addition, its derivative for a constant is zero.

The Caputo derivative is the most appropriate fractional operator to be used in
modeling real world problem.

The Atangana-Baleanu fractional derivative is more generalized and very
appropriate in modeling the behavior of orthodox viscoelastic materials, thermal
medium, etc.
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Disadvantages of the fractional derivatives

The Riemann-Liouville derivative of a constant is not zero.

In addition, if an arbitrary function is a constant at the origin, its fractional
derivation has a singularity at the origin, for instance, exponential and
Mittag-Leffler functions. These disadvantages reduce the field of application of the
Riemann-Liouville fractional derivative.

Caputo’s derivative demands higher conditions of regularity for differentiability: to
compute the fractional derivative of a function in the Caputo sense, we must first
calculate its derivative.

Caputo derivatives are defined only for differentiable functions while functions that
have no first-order derivative might have fractional derivatives of all orders less
than one in the Riemann-Liouville sense.

With the Caputo-Fabrizio derivative, the kernel is local and its derivative when
α = 0 does not give the initial function. In addition to this, the anti-derivative
associated with the Caputo-Fabrizio operator is not fractional.

The Atangana-Baleanu derivative has the problem of initial conditions.
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Preliminaries and methodologies

Let us consider a continuous function y = f (t) . According to the well-known definition,
the first-order derivative of the function f (t) is defined by

f ′(t) =
df

dt
= lim

h→0

f (t)− f (t − h)

h
. (2.1)

Applying this definition twice gives the second-order derivative:

f ′′(t) =
d2f

dt2
= lim

h→0

f ′(t)− f ′(t − h)

h

= lim
h→0

1
h

{
f (t)− f (t − h)

h
− f (t − h)− f (t − 2h)

h

}
= lim

h→0

f (t)− 2f (t − h) + f (t − 2h)

h2

(2.2)
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Preliminaries and methodologies

Using (2.1) and (2.2), we obtain

f ′′′(t) =
d3f

dt3
= lim

h→0

f (t)− 3f (t − h) + 3f (t − 2h)− f (t − 3h)

h3 (2.3)

and, by induction,

f (n)(t) =
dnf

dtn
= lim

h→0

1
hn

n∑
r=0

(−1)r
(

n
r

)
f (t − rh) (2.4)

where (
n
r

)
=

n(n − 1)(n − 2) . . . (n − r + 1)

r !
(2.5)

is the usual notation for the binomial coefficients.
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Basic concepts on Laplace transform

The Laplace transform of the function f (t) is defined as:

F (s) = L{f (t); s} =

∫ ∞
0

e−st f (t)dt, s > 0 (2.6)

For the existence of the integral (2.6), the function f (t) must be of exponential order α,
which means that there exist positive constants M and T such that
e−αt |f (t)| ≤ M for all t > T . The convolution of two functions f and g is defined as

f (t) ∗ g(t) =

∫ t

0
f (t − τ)g(τ)dτ =

∫ t

0
f (τ)g(t − τ)dτ (2.7)

The Laplace transform of the convolution of f and g is defined as:

L{f (t) ∗ g(t)} = F (s)G(s). (2.8)
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Definitions of some fractional derivatives

Definition 1
[2] Let f ∈ H1(a, b), α ∈ (0, 1), where H1(a, b) = {f ∈ L2(a, b) : Df ∈ L2(a, b)}. Then
the Riemann-Liouville fractional derivative of the function f of order α is defined by

RL
a Dα

t f (t) =
1

Γ(1− α)

d

dt

∫ t

a

(t − τ)−αf (τ)dτ. (2.9)

The symbol Γ stands for the Gamma function defined by

Γ(α) =

∫ ∞
a

exp(−τ)τα−1dτ, Γ(α + 1) = α! = αΓ(α). (2.10)

Definition 2
[1] The Laplace transform of the Riemann-Liouville fractional derivative is given by

L
{

RL
a Dα

t f (t)
}

(s) = sαL{f (t)} − RL
a Dα

t f (t)|t=a, 0 < α < 1, (2.11)

where L is the Laplace transform operator. It is also assumed that f is a
piecewise-continuous function of exponential order.
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Definition 3
[2] Let f ∈ H1(a, b), α ∈ (0, 1), where H1(a, b) = {f ∈ L2(a, b) : Df ∈ L2(a, b)}. Then
the Caputo fractional derivative of the function f of order α is defined by

C
a D

α
t f (t) =

1
Γ(1− α)

∫ t

a

(t − τ)−αf ′(τ)dτ. (2.12)

Definition 4
[2] The Caputo fractional integral of a function f of order α is defined by

C
a I
α
t f (t) =

1
Γ(α)

∫ t

a

(t − τ)α−1f (τ)dτ, t > 0, (2.13)

If f (t) = 1, the fractional integral of order α > 0 is given by

C
a I
α
t (1) =

1
Γ(α)

∫ t

a

(t − τ)α−1(1)dτ =
tα

Γ(α + 1)
. (2.14)



Definition 5
[2] The Laplace transform of Caputo fractional derivative is given by

L
{

C
a D

α
t f (t)

}
(s) = sαL{f (t)} − sα−1f (a), 0 < α < 1, (2.15)

where L is the Laplace transform operator. It is also assumed that f is a
piecewise-continuous function of exponential order.

Definition 6
[4] Let f ∈ H1(a, b), α ∈ (0, 1), then the Caputo-Fabrizio (CF) derivative of a function f
of order α is given by:

CF
a Dα

t f (t) =
(2− α)F(α)

2(1− α)

∫ t

a

f ′(τ)exp

[
−α(t − τ)

1− α

]
dτ, (2.16)

where F(α) = (1− α) + α
Γ(α)

, denotes a normalization function satisfying
F(0) = F(1) = 1.
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Theorem 7

[4] The Caputo-Fabrizio fractional integral operator of order α is given by

CF
a Iαt f (t) =

2(1− α)

(2− α)F(α)
f (t) +

2α
(2− α)F(α)

∫ t

a

f (τ)dτ. (2.17)

Definition 8
[4] The Laplace transform of the Caputo-Fabrizio derivative is given by

L
{

CF
a Dα

t f (t)
}

(s) =
(2− α)F(α)

2
sL{f (t)} − f (a)

s + α(1− s)
. (2.18)

Definition 9
[5] Let f ∈ H1(a, b), α ∈ (0, 1), then the Atangana-Baleanu fractional derivative for a
given function of order α in Caputo sense is defined by

ABC
a Dα

t f (t) =
F(α)

(1− α)

∫ t

a

f ′(τ)Eα[−α (t − τ)α

1− α ]dτ, (2.19)



where F(α), satisfying F(0) = F(1) = 1, is a normalization function and Eα (.) is the
one-parameter Mittag-Leffler function, defined by,

Eα(t) =
∞∑
k=0

tk

Γ(αk + 1)
, α > 0. (2.20)

Also, for α = 1, this becomes E1(t) =
∑∞

k=0
t

Γ(k+1)
=
∑∞

k=0
tk

k!
= et .

Definition 10
[5] Atangana-Baleanu fractional integral of order α is defined as

AB
a Iαt f (t) =

1− α
F(α)

f (t) +
α

F(α)Γ(α)

∫ t

a

f (τ)(t − τ)α−1dτ. (2.21)

Definition 11
[5] The Laplace transform for the Atangana-Baleanu fractional operator of order α,
where 0 < α < 1 is given as

L
{

ABC
a Dαf (t)

}
(s) =

F(α)

1− α
sαL{f (t)} − sα−1f (a)

sα + α
1−α

. (2.22)



Basic idea of the NSFDs
We shall briefly discuss the basic idea of NSFDs and provide a general method for
calculating denominator functions.
The first equation to be discretized is the decay equation given below

dx

dt
= −λx (3.1)

A simple discretization is to use a standard forward-Euler representation, i.e.,

xk+1 − xk
h

= −λxk (3.2)

This expression can be rewritten in the form

xk+1 = (1− λh)xk (3.3)

It can be observed that Eq. (3.3) leads to instabilities (or negative solutions, even with
positive initial conditions) if λh > 1 . However, if we use the fact that

1− λh = e−λh + O
(
λ2h2) (3.4)

then for sufficiently small λh, i.e., 0 < λ.h� 1, we can make the replacements

1− λh→ e−λh
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or

h→ 1− e−λh

λ

Let us now select the denominator function for the discretization of the decay equation
to be φ(h, λ) = 1−e−λh

λ
, and, as a consequence, rewrite Eq. (3.3) in the form

xk+1 − xk(
1−e−λh

λ

) = −λxk (3.5)

which can be re-written as:
xk+1 = e−λhxk (3.6)

It turns out that this is the exact finite difference scheme for Eq. (3.1). It is interesting
to note that, Eq. (3.5), can also be derived by using an implicit forward-Euler scheme
for Eq. (3.1), i.e.,

xk+1 − xk
h

= −λxk+1 (3.7)

or
xk+1 =

xk
(1 + hλ)

(3.8)

Again, note that for λh� 1, we have

1 + λh = eλh + O
(
λ2h2) (3.9)
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or
xk+1 =

xk
(1 + hλ)

(3.10)

Again, note that for λh� 1, we have

1 + λh = eλh + O
(
λ2h2) (3.11)

Using the argument made above, it follows that

h→ eλh − 1
λ

(3.12)

and the discretization is
xk+1 − xk(

ehλ−1
λ

) = −λxk+1, (3.13)

which again is the exact finite difference scheme for Eq. (3.1). Note also, that (3.13)
can be rewritten as the following first-order difference equation

xk+1 = e−λhxk (3.14)

Also, since they are exact finite difference schemes, these discretization hold for all
h > 0 and either sign for the parameter λ.
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Non- Standard Finite Difference Scheme for Caputo
fractional derivative

The Caputo derivative of function f (t) of order α ∈ (0, 1) is defined as

CDα
t [f (t)] =

1
Γ(1− α)

∫ t

0

f
′
(θ)

(t − θ)α
dθ. (3.15)

The discretization of domain [0, T ] is given as

tj = j h, j = 0, 1, 2, 3, . . . (3.16)

where h =
T

N
, N represent number of sub intervals and T is final time. Now at

t = tj+1, Caputo derivative becomes

CDα
t [f (t)] |t=tj+1 =

1
Γ(1− α)

∫ tj+1

0

f
′
(θ)

(tj+1 − θ)α
dθ, (3.17)

or
CDα

t [f (t)] |t=tj+1 =
1

Γ(1− α)

j∑
k=0

∫ tk+1

tk

f
′
(θ) (tj+1 − θ)−α dθ, (3.18)



Now we approximate f
′
(θ) =

df (θ)

dθ
on [tk , tk+1] as

df (θ)

dθ
=

f k+1 − f k

Ψ(h)
, (3.19)

where f k = f (tk) and Ψ(h) =
eµh−1

µ
= h + O(h2).

Now (3.18) becomes

CDα
t [f (t)] |t=tj+1 ≈

1
Γ(1− α)

j∑
k=0

∫ tk+1

tk

f k+1 − f k

Ψ(h)
(tj+1 − θ)−α dθ, (3.20)

or
CDα

t [f (t)] |t=tj+1 =
1

Γ(2− α)

j∑
k=0

f k+1 − f k

Ψ(h)
Ak
α,j , (3.21)

where

Ak
α,j = (1− α)

∫ tk+1

tk

(tj+1 − θ)−α dθ = h1−α[(j − k + 1)1−α − (j − k)1−α]. (3.22)
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Consider the fractional order single population growth model:

C
0 DtN(t) = f (t,N(t)) = rN(t), N(0) = N0 (3.23)

Now the equation (3.23) can be written as

CDα
t [N(t)] = f (N(t)). (3.24)

At t = tj+1, we get
CDα

t [N(t)] |t=tj+1 = f (N(tj+1)). (3.25)

Now using (3.21), we obtain that

1
Γ(2− α)

j∑
k=0

Nk+1 − Nk

Ψ(h)
Ak
α,j − f (N(tj+1)) = 0. (3.26)

Applying the scheme (3.26) to the fractional model (3.23), we have

1
Γ(2− α)

j∑
k=0

Nk+1 − Nk

Ψ(h)
Ak
α,j = rN j+1 (3.27)

or
j∑

k=0

(
Nk+1 − Nk

)
Ak
α,j = rN j+1Ψ(h)Γ(2− α) (3.28)

Note that, for k = j , Ak
α,j = h1−α.
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Thus,

(
N j+1 − N j

)
h1−α +

j−1∑
k=0

(
Nk+1 − Nk

)
Ak
α,j = rN j+1Ψ(h)Γ(2− α) (3.29)

N j+1 =
h1−αN j −

∑j−1
k=0(Nk+1 − Nk) Ak

α,j

h1−α − rΨ(h)Γ(2− α)
(3.30)
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Fractional NSFD when α=0.90
ODE45 for the integer order case
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