
Bayesian Nonparametric Tensor Completion

Amir Forouzandeh
Department of Computing Science

Jude Kong
Department of Mathematics

Alex Lewandowski
Department of Statistics

Mehran Mahmoudi
Department of Computing Science

Gian Matharu
Department of Physics

Abstract

In this paper, we propose a Bayesian nonparametric method to estimate missing
data in tensors. The proposed method uses a Tucker-1 factorization to learn a
smaller core tensor and a factor matrix via Gibbs sampling. Unlike most existing
Tucker factorization algorithms, the tensor rank is estimated automatically. This
is done by employing an Indian Buffet Process prior over the latent matrix, where
the estimated number of non-zero columns corresponds to the tensor rank. The
missing data is then estimated based on the latent structure learned from the fac-
torization. As a result, the method provides a form of Bayesian model averaging
over estimated ranks, allowing it to avoid overfitting. As an illustration, a num-
ber of datasets are artificially corrupted at various levels. Relative error is used to
assess completion performance and our result is compared to parallel matrix fac-
torization as a baseline. The empirical results show that our method does not beat
the current state of the art, but provides pertinent information that other methods
do not. That is, statistical quantities, like mean standard error, are readily avail-
able due to the Bayesian estimation framework of our method. Lastly, we identify
some future avenues for research that may improve performance.

1 Introduction

Missing data is a problem that frequently arises during empirical analyses. In particular, domain
specific phenomena may cause data to be missing for various reasons. Consider the following three
cases: First, in the field of medical science, datasets may have missing data because of patients
that do not want to disclose certain information about themselves. It is also possible that certain
medical procedures are not performed on selected patients. In this case, one may need to estimate
the missing data to perform further data analysis. Second, in the context of collaborative filtering,
datasets that involve consumer ratings may have missing values because not every product has been
consumed. Hence, estimates for missing values act as recommendations. Third, in the field of image
processing it is common to have a corrupted image. Such missing data can have a negative impact
on data analysis including biased parameter estimates and inflated standard errors [1, 2].

Many datasets can be organized as a two-dimensional array (matrix). A tensor (multi-dimensional
array) provides an effective way of representing the structural properties of higher dimensional data.
Colour images are simple examples of third order tensors since they consist of different intensities of
red, green, and blue for each pixel. Tensor completion is a procedure that facilitates the imputation of
missing data by using only the available entries and structural properties of the tensor. This can only
be possible if there is a relationship between the missing entries and available entries. Techniques
for tensor completion are an active area of research, due their potential applications and flexibility
[3, 4].

Most work on tensor completion is based on Tucker [5] and CANDECOMP/PARAFAC (CP) [6]
tensor factorizations which are introduced at a later stage. Both of these factorizations require an
estimate of the tensor rank as a parameter. However, finding the true tensor rank is NP-hard [7].

In this project, we attempt to address these shortcomings by taking a probabilistic approach to the
Tucker factorization. Our algorithm combines a Gibbs sampler and a Tucker-1 factorization to deter-
mine the ranks automatically. In particular, our model employs an Indian Buffet process prior over
the latent factor matrix, which provides sparsity needed to estimate the tensor rank. The designed
algorithm takes in an incomplete data set in tensor form, and produces estimates of the missing data
values based on the latent structure. To evaluate our work, we use a set of artificially corrupted
datasets and measure the relative error. Our results are compared to parallel matrix factorization
(PMF) as a baseline [8]. However, since the algorithm produces a sample, we are also able to obtain
various statistical quantities that other methods cannot.

The remainder of this paper is organized as follows: in section 2 we discuss background on tensors,
including notation, definitions and common factorizations. In section 3, we review related work on
tensor completion. In section 4, we discuss tensors in a Bayesian nonparametric framework and
outline a Gibbs sampling method for inference. In section 5, we discuss MRI data as an illustrative
example and outline our results on other datasets. Lastly, in section 6 we summarize what we did
and outline avenues for further research.

2 Background

In this section we briefly review tensor notation, definitions and common factorizations. To maintain
consistency with previous tensor literature, we use the notation conventions and definitions of [3].
We only include material pertinent to this study. For a more complete discussion of tensor theory,
the reader is referred to [3].

2.1 Tensors

A tensor is a multidimensional array. The number of dimensions of a tensor is known as the order
(used interchangeably with “modes” or “ways”). Vectors and matrices represent first and second
order tensors, respectively. Vectors are denoted by bold lower-case letters e.g. x, whereas matrices
are denoted by bold upper-case letters e.g. X. For this paper we restrict the usage of the term
tensor to higher order tensors (N ≥ 3) and represent them using Euler script (e.g. X). Using index
notation, a single element of a vector, matrix or tensor can be given as xi, xij and xijk respectively.

2.2 Tensor norm

The norm of a tensor X ∈ RI1×I2×···×IN is defined as

∥X∥F =

√√√√
I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

xi1,i2,...,iN .

This definition provides a tensor equivalent to the Frobenius norm used for matrices.

2.3 Tensor rank and the CP decomposition

An N -th order tensor is defined to be rank one if it can be represented as the outer product of N
vectors a(i) for i = 1, 2, . . . , N .

X = a(1) ◦ a(2) ◦ · · · ◦ a(N).

The rank of a tensor, rank(X), is the smallest number of rank-one tensors that can be summed to
form X . For a third order tensor this can be expressed as

X =
R∑

r=1

ar ◦ br ◦ cr

2

for vectors ar ∈ RI ,br ∈ RJ , cr ∈ RK and an integer R > 0. ◦ denotes an outer product. R
represents the tensor rank. The above summation is known as an exact CP decomposition. An
approximate factorization can be achieved by a truncated summation of rank one tensors (i.e. fewer
than rank(X) summations). Determining the rank of a tensor is NP-hard [3]. A more prevalent
definition of rank for tensors is the n-rank which relates to the ranks of matricizations of a tensor.

2.4 Matricization of a tensor and n-rank

The matricization (or unfolding) of a tensor involves fixing all but one index of a tensor and placing
the remaining elements into columns of a matrix. The mathematical definition of the unfolding
process is somewhat inelegant, therefore we provide an example to provide intuition.

An nth order tensor has n mode unfoldings denoted by X(n). Consider a 3rd-order tensor X ∈
R2×3×2. The two layers of the tensor are

X (:, :, 1) =

[
1 3 5
2 4 6

]
, X (:, :, 2) =

[
7 9 11
8 10 12

]

and the corresponding mode unfoldings are given by

X(1) =

[
1 3 5 7 9 11
2 4 6 8 10 12

]
,

X(2) =

[
1 2 7 8
3 4 9 10
5 6 11 12

]
,

X(3) =

[
1 2 3 4 5 6
7 8 9 10 11 12

]
.

Let X ∈ RI×J×K ,A ∈ RM×I ,Y ∈ RM×J×K . Then a common way to express the product of
a matrix and a tensor is in the form of a indexed-product. Below, we show an example where the
index is 1, which we use in our work.

Y = X ×1 A⇔ Ymjk =
∑

i

XijkBmi

Having defined the n-mode unfoldings we now define the n-rank. The n-rank is a set of ranks
R1, R2, . . . , Rn that provide the ranks for each of the n-mode unfoldings (Ri represents the rank of
X(i)).

2.5 Tucker factorization

The tucker factorization represents a generalization of singular value decomposition (SVD) and
principal component analysis applied to higher order tensors. For a third order tensor, the tucker
factorization can be presented as

Xijk ≈
P∑

p=1

Q∑

q=1

R∑

r=1

Gpqr · aip · bjq · ckr

with factor matrices A ∈ RI×P ,B ∈ RJ×Q,C ∈ RK×R. The factor matrices represent the left
singular vectors/principal components obtained by applying SVD to the n-mode unfoldings (X(n))
of the original tensor. The core tensor performs a role comparable to the matrix of singular values
in SVD i.e. it carries weights for the various principal components. Two variations on the Tucker
decomposition are the Tucker-2 and Tucker-1 factorizations. Tucker 1 replaces factor matrices B
and C with identities. Tucker 2 replaces only C with an identity.

3 Related work

The work on tensor completion takes two main approaches. First, there are deterministic meth-
ods which tend to be optimization problems with the trace norm as the objective function. These

3

methods are usually convex and are quite fast. However, the current literature is not very focused
on scalability and the optimization may become difficult for massive tensors. General approaches
to the problem can be found in [9], where a CP factorization was used to impute missing entries.
The problem becomes a weighted least-squares optimization, which can be solved quite quickly. In
addition, [10] formulated an expectation-maximization type of algorithm that uses singular value de-
composition to characterize subspaces as components of the Tucker factorization. One result is that
these algorithms tend to overfit the data, and provide poor estimates of the missing entries, when
only sparse observations are available. For our baseline, we use parallel matrix factorization for
tensor completion [8]. The reason for this is that the method has state of the art performance and rel-
atively straight forward implementation. One problem with all of these approaches is that the tensor
rank must be manually specified. However, the determination of tensor rank remains a challenging
problem [7] and most approaches treat the rank as a tuning parameter.

The second approach, which is the one that we take, is probabilistic. In particular, it combines a
Bayesian nonparametric approach in [11] with automatic rank selection in [12]. The former paper
places a nonparametric prior (Gaussian Process) on the core tensor, while we place a nonparametric
prior over the factor matrices. The latter paper does not take a Bayesian nonparametric approach,
and instead uses conventional Bayesian methods. These approaches, Bayesian nonparametric in
particular, are computationally expensive. However, scalable methods are an active research area
[13]. Indeed, while probabilistic methods are slower than deterministic ones, they are preferred due
to the extra information you obtain, such as confidence intervals [14].

4 Probabilistic approach

4.1 Factorization

We consider a probabilistic approach to the Tucker factorization. In particular, we look at Tucker-1
which is a special case of the more general Tucker scheme. That is, we have two factor matrices
chosen to be identity matrices of appropriate size.

Xijk =
R∑

r=1

J∑

s=1

K∑

t=1

Grst ·Air · 1(s=J) · 1(t=K) + ϵijk

where ϵijk ∼ N (0,σ2
X)

Consider a simple example, where X is an order 3 tensor of dimensions 3 × 3 × 3. Then Tucker-1
attempts to find a matrix A of dimension 3 × R and a tensor G of dimension R × 3 × 3, such that
the product is close to X . As mentioned earlier, traditional Tucker methods require specifying R
as a parameter. This can be thought of a type of rank, but finding the value of R is an NP-hard
problem and intractable with missing values. Hence, R is treated as a tuning parameter to minimize
a measure of error. This approach is unsatisfactory for two reasons. First, training a model for
multiple R values can be infeasible for large tensors. Second, the value of R may have importance
in the context of the problem, as a proxy estimate for the rank.

Figure 1: Left: Tucker-1 Decomposition, Right: A sample from an Indian Buffet Process

4

4.2 Bayesian nonparametric prior

Our approach to estimating R is to employ a nonparametric prior over the matrix A. Consider the
case where R = ∞, resulting in an infinite matrix A and infinite tensor G. To ensure that the
sum converges, we impose a sparsity inducing prior on A. Specifically, we need the columns of
A to be 0 vectors past some index R. Then, the problem is estimating the index R such that the
A(: , R+ a) = 0 for all a > 0.

One possibility is an Indian Buffet Process (IBP), which provides a prior over sparse infinite binary
arrays. The process is commonly described as a culinary metaphor: The first customer enters an
Indian restaurant and samples poisson(α) dishes. Then, customer i enters and adds dishes to their
plate in proportion to the dishes popularity. Afterwards, they sample poisson(αi) new dishes [15].
For example, say the first customer samples poisson(4) = 4 dishes. The second customer will go
to each of these dishes and flip a coin. if the coin lands on heads they sample that dish, they skip
it otherwise. They then sample poisson(2) new dishes. This goes on for every customer and since
there are only finite customers at each step, there will be finite non-zero columns.

This process is described inductively, but an important result is that the distribution is actually ex-
changeable. That is, the distribution does not depend on the order that the customers enter the
restaurant. Another important detail is that there are an infinite amount of dishes, however the num-
ber of rows is fixed or known beforehand. In our simple example, we have that the number of
customers corresponds to I = 3. The matrix generated from an IBP can be thought of as infinite,
with A(: , R+ a) = 0 for some a > 0, which is exactly the criterion that we need.

It can be easily seen that if R(i)
1 is the number of dishes sampled by customer i, then R(i)

1 ∼
poisson(αi). Then, we have that R =

∑I
I=1 R

(i)
1 =

∑I
i=1 poisson(

α
i). Since the sum of poisson

distributed variable is also poisson, we have that R ∼ poisson
(
α
∑I

i=1(
1
i)
)

.

The exact form of the probability density function of an IBP is a technical derivation, depending on
the notion of a left ordered equivalence class of matrices. The process can be constructed by taking
the infinite limit of a Beta-Bernoulli hierarchical model, or by a stick-breaking construction [16].
The distribution can be written as follows, where HI denotes the I-th harmonic number.

P (A) =
αR

(N !)R
∏I

i=1 R
(i)
1 !

exp(−αHI)
R∏

n=1

(I −mk)!(mk − 1)!

Since we are taking a Bayesian approach, we describe the conditional distribution P (Air = 1|A−ir)
where A−ir denotes the elements of A other than Air. There are two cases to consider, either Air

is a previously sampled dish or Air is a newly sampled dish. In the first case, Air is sampled with
proportional probability m−ik

N where m−ik denotes the number of ones in column r, not counting
Air. In the second case, Air is sampled from a poisson(α

N) [17]. In the next section, we will
develop a Gibbs sampler for our model.

4.3 Completion

Missing data is typically dealt with imputation approaches, in which suitable estimates are substi-
tuted based on a “good guess”. A common example is mean substitution or K-Nearest Neighbours.
More complicated approaches can use the EM Algorithm, which finds the values that maximize
the expectation of seeing the observed data. In a Bayesian setting, we can use Gibbs sampling to
sample values for the missing values. If we are able to write the conditional distributions for the
missing data and the unknown parameters, then the sequence of samples from the full conditionals
will converge to samples from the posterior [15].

We make this idea more concrete by denoting the index set of missing values as M. Then, we begin
by writing the full joint probability as follows

P (X ,G,A,σ2
G ,σ

2
X ,α) ∝ P (X|G,A,σ2

X)P (G|σ2
G)P (A|α)P (σ2

G)P (σ2
X)P (α)

The first term in this expression is the likelihood, which is normally distributed because of the
gaussian noise assumption. The second term, the prior on the core tensor, is also normally dis-
tributed by assumption. The third term is the IBP prior term that we specified to employ auto-
matic rank estimation. The last three terms are hyper-priors, where α ∼ Gamma(aα, bα) and

5

σ2
X ∼ invGamma(aX , bX), σ2

G ∼ invGamma(aG , bG). In practice, the hyper parameters are set
to a = b = 1.

The assumptions placed on the various terms are for ease of computation and conjugacy. In partic-
ular, observe that the prior on G is conjugate to the likelihood term. Although the samples from G
may give insight on the latent structure of X , we are mostly interested in the samples of the missing
values XM. Since we are interested in sampling XM for tensor completion, we can integrate G
out of the joint distribution for a faster Gibbs sampler [18]. The resulting joint distribution can be
written as

P (X ,A,σ2
G ,σ

2
X ,α) ∝ P (X|σ2

G ,A,σ2
X)P (A|α)P (σ2

G)P (σ2
X)P (α)

Now, we write the the full conditional for updating the matrix A as follows

P (Ai,j = 1|X ,A−(i,j),σ
2
G ,σ

2
X) ∝ P (X|A,σ2

G ,σ
2
X)P (Ai,j = 1|A−(i,j))

The first term is simply the likelihood, which is distributed as N (A ×1 G,σ2
G). The second term is

the prior based on the IBP which is outlined in the previous section.

P (σ2
G | X ,A,σ2

X ,α) ∝ P (X|σ2
G ,A,σ2

X)P (σ2
G)

P (σ2
X | X ,A,σ2

G ,α) ∝ P (X|σ2
G ,A,σ2

X)P (σ2
X)

P (α | X ,A,σ2
G ,σ

2
X) ∝ P (A|α)P (α)

This is the tensorized version of the linear-Gaussian binary latent feature model [15], and the exact
derivation of the posterior estimates can be found in [18], where source code for a Gibbs sampler
was used. Then, given that every parameter is sampled, we can retrieve estimates for the missing
values XM as below. Note that only missing values are sampled, since sampling the full tensor may
be more expensive and introduce additional noise.

X̂M ∼ P (X|G,A,σ2
X) = N ((G ×1 A)M ,σ2

X)

Where, G can be retrieved from the estimates of A,σ2
G ,σ

2
X as follows:

G = X̂ ×1 (A
TA+

σ2
G

σ2
X
I)−1AT

Algorithm 1 Input: Tensor, MissingValueIndexSet; Output: CompletedTensor
1: procedure IBPTUCKER
2: burnIn← 500
3: numSamples← 1000
4: Gibbs.Chain = zeros(size(Tensor), numSamples-burnIn)
5: for i = 1:numSamples:
6: Tensor.GibbsSample(MissingValueIndexSet)
7: if i ≥ burnIn then
8: Gibbs.Chain← Tensor.newX .
9: CompletedTensor = mean(Gibbs.Chain)

Then our evaluation criteria is relative error for prediction, where ∥T ∥F =
∑

I T 2
I is the Frobenius

norm, i.e. the sum of squares of every element. For this measure, lower values of E are better.

E =
∥TM − T̂M∥F
∥TM∥F

Returning to our simple example from section 4.3, where X is an order 3 tensor of dimensions
3 × 3 × 3. Say one value, X222, is missing. Then M = {(222)} and we need to find a matrix A
of dimension 3 × R as well as G of dimension R × 3 × 3. All hyperparameters are initialized to 1
and A is generated from IBP (α) = IBP (1). Then, the estimate for R is the number of columns
of A. This process is repeated until the number of iterations is greater than the burn in time, then
X̂222 ∼ N ((G ×1 A)222,σ2

X) is sampled and saved to X̂M. This is continued until convergence,
where mean(X̂M) is returned as the estimate for the missing value X222.

6

50% IBPT 50% PFA 90% IBPT 90% PFA

MRI 0.2560 0.1870 0.4600 0.3300

AA 0.0495 0.0214 0.1208 0.3910

FIA 0.1804 0.0083 0.3850 0.0360

KG 0.2208 0.1300 0.3717 0.3840

Table 1: Relative Errors for IBP-Tucker (IBPT) and Parallel Matrix Factorization (PFA)

5 Results

As an illustrative example, we use an MRI dataset found in MATLAB. The dataset provides a three
dimensional image of the brain, with dimensions 127 × 127 × 27. We proceed to randomly select
50% and 90% of the pixels and mark them as corrupted by substituting the value zero. As before, we
let M be the index set of missing values. Referring to Figure 2, we see that the lower corruption rate
of 50% results in an image with more detail. Referring to Table 2, we find some summary statistics
and note that the standard errors for the estimates are quite small, and credible intervals for regions
of interests would be precise.

(a) 90% Missing Values (b) 50% Missing Values

(c) 90% Missing Values, completed (d) 50% Missing Values, completed

Figure 2: Horizontal Slices from MRI data with missing values

In addition to the MRI example, we also look at three other popular tensor datasets. First, we
look at the Amino Acids (AA) dataset which has dimension 5 × 201 × 61. The data measures the
fluorescence by excitation and emission of 5 different laboratory-made samples of varying chemical

7

50% σ2
X 90% σ2

X 50% σ2
G 90% σ2

G 50% R 90% R 50% s.e.(X̂M) 90% s.e.(X̂M)

MRI 0.03332 0.05149 0.07706 0.09134 37.605 29.000 0.04551 0.06200

AA 7.85217 17.9079 35.8488 40.0121 38.000 41.000 9.27719 22.6816

FIA 0.03156 0.04467 0.07167 0.08151 5.0000 3.4280 0.03912 0.05009

KG 0.02436 0.03098 0.06676 0.07716 12.000 6.9080 0.03685 0.04598

Table 2: Summary Statistics for IBPT Gibbs Sample, all values are mean estimates

concentrations. This data exhibits no problems and is used as a control. Second, we look at the Flow
Injection Analysis (FIA) dataset which has dimension 12×50×45. The data is similar to the Amino
Acid data, but is known to have severe problems with local minima. Third, we look at the Kojima
Girls (KG) dataset, which has dimension 153× 4× 20. The data measures suffers from degeneracy
in that there is no least squares solutions, and the covariates are highly correlated. Referring to Table
1 for relative errors, we see that our method performed better at the 90% level for the AA and KG
dataset. However, when it came to the FIA dataset, our method performed very poorly. It seems
that smaller datasets with local minima hamper the IBP-Tucker method in terms of relative error.
Perhaps with more computing power, we could run the Gibbs sampler for longer and achieve better
results.

Referring to Table 2 again, we find that the standard error for estimates (s.e.(X̂M)) increases from
50% to 90%. This makes sense since there is less observed data, and therefore less information
regarding latent structure. Moreover, the standard error for estimates is always higher than σ2

X .
Intuitively, estimated missing values are predictions and standard statistical theory says that standard
errors on predictions are higher than sample standard errors. Another interesting result is that there
is no clear trend for the estimator tensor 1-rank (R). In general, it seems to decrease as there is more
missing data, but this warrants further research.

6 Discussion

Throughout this paper, many simplifications were made for simplicity or ease of computation. These
were not necessary, however they made the Gibbs sampler much faster. In future work, it would be
interesting to explore sensitivity in the hyperprior specification. That is, if we change the hyperpa-
rameters or the hyperpriors over σ2

G ,σ
2
X ,α, are we able to estimate the missing values better? In

addition, we could tailor distributional assumptions to a particular interesting dataset.

The biggest limitation of this paper is the Gibbs sampling procedure, which may become completely
unfeasible for large datasets. Hence, another avenue for research lies in variational methods of in-
ference, as opposed to Gibbs sampling. This would allow for an even more flexible model, with a
more general Tucker factorization. Lastly, we may explore an application of our Bayesian nonpara-
metric tensor factorization to compression. We can approximate elements of a known tensor since
the factorization has less elements than the entire tensor. However, theoretical guarantees on error
are needed, as well as an optimal compression rate.

In this paper, we proposed a Bayesian nonparametric method for tensor completion with automatic
rank selection. Our method is a combination of two distinct works: one on bayesian nonparametric
tensor completion and another on Bayesian automatic rank selection for tensor factorization. In
particular, we use an Indian Buffet Process prior on the factor matrix of a Tucker-1 decomposition.
The rank is then estimated by estimating the number of columns in the factor matrix. Although
slow, we use Gibbs sampling to learn the latent structure of the tensor, which is encoded in the
factorization. Specifically, we employ a collapsed Gibbs sampler that integrates out the core tensor
in the Tucker-1 factorization.

Our empirical results show that there is some room for improvement. In particular, IBP-Tucker is
beat consistently at the 50% missing data level. However, IBP-Tucker provides much more informa-
tion about the dataset than point estimates. In particular, our method was able to estimate the tensor
1-rank as well as various measures of standard error. Therefore, despite suboptimal performance in
some cases, IBP-Tucker should be used when there is a need for confidence or credibility.

8

References
[1] Hugo Peyre, Alain Leplège, and Joël Coste. Missing data methods for dealing with missing

items in quality of life questionnaires. a comparison by simulation of personal mean score, full
information maximum likelihood, multiple imputation, and hot deck techniques applied to the
sf-36 in the french 2003 decennial health survey. Quality of Life Research, 20(2):287–300,
2011.

[2] Uwe Müller-Bühl, Bernhard Franke, Katja Hermann, and Peter Engeser. Lowering missing
item values in quality-of-life questionnaires: an interventional study. International journal of
public health, 56(1):63–69, 2011.

[3] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review,
51(3):455–500, 2009.

[4] Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan, and Shun-ichi Amari. Nonnegative ma-
trix and tensor factorizations: applications to exploratory multi-way data analysis and blind
source separation. John Wiley & Sons, 2009.

[5] Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika,
31(3):279–311, 1966.

[6] Richard A Harshman. Foundations of the parafac procedure: Models and conditions for an"
explanatory" multi-modal factor analysis. 1970.

[7] Christopher J Hillar and Lek-Heng Lim. Most tensor problems are np-hard. Journal of the
ACM (JACM), 60(6):45, 2013.

[8] Yangyang Xu, Ruru Hao, Wotao Yin, and Zhixun Su. Parallel matrix factorization for low-rank
tensor completion. arXiv preprint arXiv:1312.1254, 2013.

[9] Evrim Acar, Daniel M Dunlavy, Tamara G Kolda, and Morten Mørup. Scalable tensor factor-
izations for incomplete data. Chemometrics and Intelligent Laboratory Systems, 106(1):41–56,
2011.

[10] Xin Geng, Kate Smith-Miles, Zhi-Hua Zhou, and Liang Wang. Face image modeling by mul-
tilinear subspace analysis with missing values. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B (Cybernetics), 41(3):881–892, 2011.

[11] Zenglin Xu, Feng Yan, and Yuan Qi. Bayesian nonparametric models for multiway data anal-
ysis. IEEE transactions on pattern analysis and machine intelligence, 37(2):475–487, 2015.

[12] Qibin Zhao, Liqing Zhang, and Andrzej Cichocki. Bayesian cp factorization of incomplete
tensors with automatic rank determination. IEEE transactions on pattern analysis and machine
intelligence, 37(9):1751–1763, 2015.

[13] Shandian Zhe, Zenglin Xu, Xinqi Chu, Yuan (Alan) Qi, and Youngja Park. Scalable nonpara-
metric multiway data analysis. In AISTATS, 2015.

[14] Wei Chu and Zoubin Ghahramani. Probabilistic models for incomplete multi-dimensional
arrays.

[15] Thomas L Griffiths and Zoubin Ghahramani. The indian buffet process: An introduction and
review. Journal of Machine Learning Research, 12(Apr):1185–1224, 2011.

[16] Samuel J Gershman and David M Blei. A tutorial on bayesian nonparametric models. Journal
of Mathematical Psychology, 56(1):1–12, 2012.

[17] Peter Orbanz and Yee Whye Teh. Bayesian nonparametric models. In Encyclopedia of Machine
Learning, pages 81–89. Springer, 2011.

[18] Finale Doshi-Velez and Zoubin Ghahramani. Accelerated sampling for the indian buffet pro-
cess. In Proceedings of the 26th Annual International Conference on Machine Learning, pages
273–280. ACM, 2009.

9

