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Abstract Delay differential equations arewidely adopted in life sciences: including
delays explicitly in mathematical models allows to simulate the systems under inves-
tigation more accurately, without the use of auxiliary fictitious compartments. This
work deals with Delay Differential Equation (DDE) models exploited in the specific
framework of the glucose-insulin regulatory system, and a brief review of the DDE
models available in the literature is presented. Furthermore, recent results on the
closed loop control of plasma glycemia, based on DDE models of the individual
glucose-insulin system are summarized. Indeed, DDE models revealed to be partic-
ularly suited to simulate the pancreatic insulin delivery rate, thereby allowing to treat
in a unified fashion both Type 1, where no endogenous insulin release is available,
and Type 2 diabetic patients, where the exogenous insulin administration adds up to
the endogenous insulin production.
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1 Introduction

Diabetes Mellitus comprises a group of metabolic diseases characterized by
hyperglycemia. The chronic hyperglycemia of diabetes is associated with long-
term damage, dysfunction, and failure of different organs, especially eyes, kidneys,
nerves, heart, and blood vessels. Patients with diabetes have an increased incidence
of atherosclerotic cardiovascular, peripheral vascular, and cerebrovascular diseases.
Diabetes a very high incidence: the number of diabetic patients is expected to double
by the year 2030, compared to 2000 data [1]. Hence, diabetes management has a
heavy impact on many national public health budgets.

In a healthy person, the blood glucose is maintained between 3.9 and 6.9mmol/L
by means of a complex control system which ensures a balance between glucose
entering the bloodstream after liver gluconeogenesis and intestinal absorption fol-
lowing meals, and glucose uptake from the peripheral tissues. This balance is reg-
ulated mainly by the insulin, a hormone produced by the β-cells of the pancreas
when properly stimulated by the level of plasma glycemia: indeed, insulin enhances
the glucose uptake in the muscles and the adipose tissues as well as it promotes the
stocking of circulating glucose in excess to the liver.

A pathological increase in blood glucose concentration (hyperglycemia) results
from defects in insulin secretion, insulin action, or both. In case of an absolute defi-
ciency of insulin secretion, caused by an autoimmune destruction of the pancreatic β

cells, Type 1 diabetes occurs: these patients require exogenous insulin administration
for survival. On the other hand, in case of hyperglycemia caused by a combination of
resistance to insulin action and inadequate compensatory insulin secretory response,
Type 2 diabetes occurs: these patients have therefore insulin resistance and usually
also a relative (rather than absolute) insulin deficiency, in the face of increased levels
of circulating glucose.

The basic therapeutic procedure for diabetes is the exogenous administration of
insulin. This compensation could be accomplished bymeans of a variety of schemes,
depending on the a priori knowledge of the patient’s glucose-insulin homeostasis
and on the technology available for actuating the designed control law. In most
widespread cases, glucose control strategies are mainly actuated by subcutaneous
administration of insulin, with the dose adjusted by the patients themselves, on the
basis of capillary plasma glucose concentration measurements. On the other hand, a
real-time closed-loop control scheme would require an algorithm that provides the
proper dose of the hormone independently of any action on the patient, and is robust
with respect to the many sources of perturbation of the glucose-insulin system like
meal ingestion, physical exercise or trivially, malfunctioning of the artificial pancreas
devices. To this aim, the use of a mathematical model of the patient’s glucose-
insulin system would allow to exploit individual optimal strategies to synthesize the
exogenous insulin administration. Clearly, the more accurate the model, the more
efficient will the control law be.

The modeling of the glucose-insulin system is an appealing and challenging topic
in biomathematics andmany different models have been presented in the last decades
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(see e.g. [2, 3] and references therein). Section2 provides a brief review on Delay
Differential Equation (DDE)models of the glucose-insulin system, and aims tomoti-
vate the reason because so many DDE models appeared in the literature along the
past decade; Sect. 3 presents recent results on DDE-model-based control laws for the
artificial pancreas, focusing on the state of the art, main results obtained and future
developments.

2 DDE Models of the Glucose-Insulin System

Most of the available glucose-insulin models are strongly related to the experimental
framework they want to replicate and can be roughly split into two main branches:
the ones concerning short period experiments like, e.g., the IntraVenous/Oral Glu-
cose Tolerance Test (IVGTT/OGTT), that last no more than 5/6h, and the others
related to long period experiments, mainly concerning the glucose/insulin ultradian
oscillations, that usually last 24h.

2.1 Short Period DDE Models

As far as short period experiments are concerned, models have been proposedmainly
with the purpose of estimating the individual insulin sensitivity of tissues in order
to predict a possible diabetes progression. In this framework, the mostly used model
in physiological research of the glucose metabolism is the Minimal Model [4, 5],
proposed for the interpretation of the IVGTT. It consists of three coupled ordinary
differential equations, one for the insulin and two for the glucose dynamics,modeling
the apparent delay of insulin action on the insulin-dependent glucose uptake by
means of an auxiliary remote compartment. The Minimal Model played a crucial
role in modeling the glucose-insulin system, mainly because it provided the insulin
sensitivity as a combination of the model parameter, thus coming out as a by-product
of the model identification procedure. However, some criticisms have been raised
in the last decade, mainly related to the mathematical coherence of the model (the
coupled equations do not ensure bounded solutions, nor a steady-state equilibrium)
and to the lack of apparent validity besides the IVGTT experimental framework.

First DDE models of the glucose-insulin system have been actually proposed to
overcome these drawbacks. In [6] the Authors deleted the remote compartment in
the glucose dynamics and introduced a distributed delay for the glucose-dependent
Insulin Delivery Rate (IDR). Besides being mathematically coherent and more ver-
satile to different sets of experiments apart from the IVGTT, such a DDE model has
also been validated on real data and, moreover, it provides the insulin sensitivity by
the estimate of a single parameter. Thereafter, there has been a widespread develop-
ment of DDEmodels, which revealed to be particularly suitable to replicate the IDR.
For instance families of DDE models have been proposed, where general delays are
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introduced both in the insulin action on tissue glucose uptake and in the glucose
action on pancreatic insulin secretion, [7, 8].

Despite the development of different DDE models of the glucose-insulin system,
they have not been adopted in a model-based framework for the artificial pancreas,
since [9]. This is because most of the efforts in this research area have been mainly
devoted to Type 1 diabetic patients, in whom the absence of a pancreatic IDR moti-
vates urgent research efforts in closed-loop exogenous insulin infusion therapies, and
weaken the necessity of preferring DDE models instead of ODE ones. On the other
hand, the ability of time-delay systems to better model the endogenous IDR makes
it so that DDE-model-based approaches could reveal to be very effective for treating
the much more prevalent category of Type 2 diabetic patients.

Beloware reported the equations of aDDEmodel recently exploited for theoretical
research in artificial pancreas [10]

dG(t)

dt
= −Kxgi G(t)I (t) + Tgh

VG
,

dI(t)

dt
= −Kxi I (t) + TiGmax

VI
f (G(t − τg)), f (G) = ( G

G∗ )γ

1 + ( G
G∗ )γ

. (1)

where G(t), [mM] and I (t), [pM], denote plasma glycemia and insulinemia. Kxgi,
[min−1 pM−1], is the rate of glucose uptake by insulin-dependent tissues per pM of
plasma insulin concentration; Tgh , [min−1 (mmol/kgBW)], is the net balance between
hepatic glucose output and insulin-independent zero-order glucose tissue uptake;
VG and VI , [L/kgBW], are the apparent glucose and insulin distribution volume;
Kxi , [min−1], is the apparent first-order disappearance rate constant for insulin;
TiGmax , [min−1(pmol/kgBW)], is the maximal rate of second-phase insulin release;
τg , [min], is the apparent delay with which the pancreas varies secondary insulin
release in response to varying plasma glucose concentrations; γ is the progressivity
with which the pancreas reacts to circulating glucose concentrations and G∗, [mM],
is the glycemia at which the insulin release is half its maximal rate.

Mathematical coherence has been proven in [8], where the model has been shown
to provide positive and bounded solutions, and is endowed with a unique asymp-
totically stable equilibrium point (for basal glycemia and insulinemia). Sufficient
conditions are also given for global stability, that has been investigated in further
papers [11, 12].

2.2 Long Period DDE Models

Long-term models of the glucose-insulin system are mainly motivated to reproduce
the phenomenonof sustained, apparently regular, longperiod oscillations of glycemia
and insulinemia, known as ultradian oscillations. A pioneering work in such a frame-
work has been the paper of Sturis et al. in 1991 [13], a sixth order nonlinear ODE
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model according to which the Authors proposed a plausible mechanism for the
genesis of the oscillations, suggesting they could originate from the glucose-insulin
reciprocal interaction without postulating an intra-pancreatic pacemaker for their
existence. In fact, the model presents two delays, both realized by means of addi-
tional fictitious compartments: one delay is associated to the suppression of glucose
production by insulin (two-compartment model for the insulin kinetics), while the
other is related to the effect of insulin on glucose production (four compartment
model for the glucose kinetics). The model of Sturis et. al. has been the starting point
for many further DDE models, aiming to replicate the occurrence of long period
oscillations as coming from a Hopf bifurcation point (see, e.g. [14–18]). It has to
be stressed that though the model of Sturis et. al. and its DDE versions have been
used, especially in recent years, to study the effect of pulsatile insulin profiles in
(pre)-diabetic patients [19–23], to the best of the authors’ knowledge, they have not
yet been adopted to synthesize a model-based control law for insulin therapy.

3 DDE Model Based Control

First results onDDE-model-based control of the glucose-insulin system can be found
in [9, 24], where the DDEmodel described in (1) was considered for a possible intra-
venous (iv) administration of the insulin therapy. To this aim the insulin equation in
(1) is endowed with an additive control input u(t). Compared to the usual subcuta-
neous insulin injection, the use of iv insulin administration, delivered by automatic,
variable speed pumps provides awider range of possible strategies and ensures a rapid
delivery with negligible delays. As a matter of fact, control algorithms based on iv
insulin administration are directly applicable so far only to problems of glycemia
stabilization in critically ill subjects, such as in surgical intensive care units after
major procedures.

In [9, 24] the input-output linearization with delay cancelation is achieved, by
means of suitable inner and outer feedback control laws, with guaranteed internal
stability. In particular, a reliable, causal state feedback which allows to reduce a high
basal plasma glucose concentration to a lower level, according to a smooth reference
glucose trajectory Gref(t), is designed with:

u(t) = S(G(t), I (t), G(t − τg)) − v(t)

Kxgi G(t)
(2)

where

S(G(t), I (t), G(t − τg)) = −Kxgi I (t)

(
−Kxgi I (t)G(t) + Tgh

VG

)
(3)

−Kxgi G(t)

(
−Kxgi I (t) + TiGmax

VI
f (G(t − τg))

)
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and v(t) = G̈re f (t) + Re(t), with R ∈ R
1×2 a matrix such that

H =
[
0 1
0 0

]
+

[
0
1

]
R (4)

has prescribed eigenvalues with negative real part and e(t) = Z(t) − Zref(t), with

Z(t) =
[

z1(t)
z2(t)

]
=

[
G(t)

−Kxgi G(t)I (t) + Tgh
VG

]
, Zref(t) =

[
Gref(t)
Ġref(t)

]
(5)

The glucose reference signal to be tracked, Gref(t), is supposed to be bounded, twice
continuously differentiable, with bounded first and second derivatives. Such a closed-
loop control law ensures input-to-state stability of the closed loop error system with
respect to disturbances occurring in the insulin dynamics, such as insulin actuator
malfunctions.

The main drawback concerns the necessity to exploit both glucose and insulin
measurement at the present and at a delayed time: insulin measurements are slower
andmore cumbersome to obtain, more expensive, and also less accurate than glucose
measurements. A need exists, therefore, to design a control law avoiding real-time
insulinmeasurements. To this aim, in order to close the loop bymeans of only glucose
measurements, a state observer for theDDE system (1) has been proposed in [25, 26].
By suitably exploiting the state observer theory for nonlinear time delay systems (see
[27]), the observer equations for the estimates of glycemia and insulinemia , Ĝ(t),
and Î (t) respectively, are given by

[
dĜ(t)

dt
dÎ (t)

dt

]
=

⎡
⎣ −Kxgi Ĝ(t) Î (t) + Tgh

VG
−Kxi Î (t) + TiGmax

VI
f
(
Ĝ(t − τg)

) + u(t)

⎤
⎦ + Q−1(Ĝ(t), Î (t))W (G(t) − Ĝ(t)),

(6)

where Q−1 ∈ R
2×2 is the inverse matrix of the Jacobian of the observability map

(see [28]), here given, for

[
x1
x2

]
∈ R

2, by

[
x1

−Kxgi x1x2 + Tgh
VG

]
. The gain matrix

W ∈ R
2×1 is chosen in order to assign suitable eigenvalues to matrix Ĥ , defined by

means of the Brunowski pair (Ab, Cb) as

Ĥ = Ab − WCb, where Ab =
[
0 1
0 0

]
, Cb = [

1 0
]
. (7)

In order to close the loop from the observed state, the control law (2)–(5) suitably
exploits the estimates Ĝ and Î as follows

u(t) = S(Ĝ(t), Î (t), Ĝ(t − τg)) − v(t)

Kxgi Ĝ(t)
, t ≥ 0 (8)
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with v(t) = G̈ref(t) + Rê(t), ê(t) = Ẑ(t) − Zref(t), and

Ẑ(t) =
[

ẑ1(t)
ẑ2(t)

]
=

[
Ĝ(t)

−Kxgi Ĝ(t) Î (t) + Tgh
VG

]
(9)

Such a control law has been proven to ensure the local convergence of the tracking
error to zero. Simulations that validated the theoretical results were also performed in
a virtual environment, showing that the results are robust with respect to a wide range
of parameter uncertainties or device malfunction. Additionally, the control law has
been further evaluated by closing the loop on a virtual patient, whosemodel equations
are different from the ones used to synthesize the control law [29]. That means: a
minimal model of the glucose-insulin system to design the insulin therapy, and a
different, more detailed, comprehensive model to test in silico the control scheme.
Such a chosenmaximal model for the virtual patient, [30], has been recently accepted
by the Food and Drug Administration (FDA) as a substitute to animal trials for the
preclinical testing of control strategies in artificial pancreas.

Further developments on such a research line involve subcutaneous insulin admin-
istration, instead of intravenous infusions, that are usually provided under the direct
supervision of a physician. To this aim, in [31–33], the model Eq. (1) are coupled to
simple linear model of the insulin absorption from the subcutaneous depot, already
exploited with the aim of glucose control in [34]:

dG

dt
= −Kxgi G(t)I (t) + Tgh

VG
,

dI

dt
= −Kxi I (t) + TiGmax

VI
f
(
G(t − τg)

) + S2(t)

VI tmax,I
,

dS2
dt

= 1

tmax,I
S1(t) − 1

tmax,I
S2(t),

dS1
dt

= − 1

tmax,I
S1(t) + u(t), (10)

with tmax,I , [min], the time-to-maximum insulin absorption. The same ideas based
on the input/output feedback linearization are applied in this framework with, how-
ever, much more complicated formulas to synthesize the control law: preliminary
results can be found in [32] where the control law is synthesized by assuming a
complete knowledge of the state of the system (i.e. glucose and insulin real-time
measurements), and local convergence to zero of the tracking error G(t) − Gref(t)
is proven. In [33] the same convergence results are obtained by means of a state
observer for the intravenous and subcutaneous insulin values, and the convergence
to zero of the tracking error is proven in [31].
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