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Abstract: A glucose control problem is considered, with the aim to regulate a basal
hyperglycemic state down to a safe euglycemic level. A discrete Delay Differential Equation
(DDE) model of the glucose-insulin system is considered, that properly takes into account also
the pancreatic insulin release, not negligible in Type 2 diabetic patients. Insulin is supposed
to be administered subcutaneously. A geometric approach is considered, according to which
the feedback linearization with delay cancelation theory is applied. In order to use only glucose
measurements to synthesize the control law an observer for nonlinear delay systems is exploited,
and the local convergence of the tracking error to zero is theoretically proven. Simulations are
performed in a virtual environment, that properly takes into account input saturation: numerical
results show the effectiveness of the proposed approach as well as that of the observer.
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1. INTRODUCTION

Diabetes Mellitus is a major chronic disease that com-
prises a group of metabolic disorders characterized by
hyperglycemia resulting from defects in insulin secretion,
insulin action, or both. Another, much more prevalent
appearance of the disease (Type 2 diabetes) is caused
by a combination of resistance to insulin action and in-
adequate compensatory insulin secretory response. These
individuals have therefore insulin resistance and usually
have relative (rather than absolute) insulin deficiency.

Exogenous insulin administration is the basic procedure
for chronic diabetic patients (in Type 1 diabetes only
exogenous insulin is available, while in Type 2, exogenous
insulin complements pancreatic production). Glucose con-
trol strategies are mainly actuated by subcutaneous ad-
ministration of the hormone (see Belazzi, Nucci & Cobelli,
2001, and references therein). However, in order to design
closed-loop control strategies, the insulin absorption from
the subcutaneous depot needs also to be considered.

In this note a model-based control law is designed by
means of subcutaneous insulin infusion. The advantages
? The work is supported in part by the Italian MIUR Project PRIN
2009 and by the Center of Excellence for Research DEWS.

are evident since, by using a mathematical model of
glucose-insulin homeostastis, the control problem may be
treated mathematically and optimal strategies may then
be determined. Different solutions have been recently pro-
posed, based on nonlinear models such as the Minimal
Model (Bergman et al., 1979), or more exhaustive com-
partmental models, e.g. (Sorensen et al., 1982), (Hovorka
et al., 2007), (Dalla Man, Rizza & Cobelli, 2007): see,
among the others, papers on Model Predictive Control
(Hovorka et al., 2004), (Magni et al., 2009), on Parametric
Programming (Dua, Doyle & Pistikopoulos, 2006), on H∞
control (Ruiz-Velzquez, Fermat & CamposDelgado, 2004),
(Chee et al., 2005), (Kovacs et al., 2011). Most of these
approaches are based on the approximation of the original
nonlinear model, provided by linearization, discretization
and model reduction (balanced truncation). An excel-
lent review of the available models presently adopted for
blood glucose regulation as well as the closed loop control
methodologies and technical devices (blood glucose sensors
and insulin pumps) may be found in (Chee & Fernando,
2007) and references therein.

Differently from previously mentioned model-based ap-
proaches, that use nonlinear Ordinary Differential Equa-
tion (ODE) models, the one presented here exploits a non-
linear discrete Delay Differential Equation (DDE) model
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of the glucose-insulin system, (Palumbo, Panunzi & De
Gaetano, 2007, Panunzi, Palumbo & De Gaetano, 2007).
Despite the great diffusion of DDE models in the last
decade, due to the fact that they allow a better represen-
tation of pancreatic Insulin Delivery Rate (IDR) (see e.g.
Li & Johnson, 2009, and references therein), they have as
yet not found widespread application in the field of glucose
control, according to the authors’ knowledge. Notice that
when attempting to design a model-based glucose control,
the works published so far have concentrated on Type
1 diabetic patients (who have essentially no endogenous
insulin production and are very well represented by ODE
models), avoiding in this way the need to take the pan-
creatic insulin delivery rate into account. On the other
hand, the closed-loop control here considered can take
into account also spontaneous pancreatic insulin release,
thereby treating Type 1 and Type 2 diabetic patients in
a unified fashion. The above mentioned DDE model of
the glucose-insulin system has been coupled to a linear
model of subcutaneous insulin absorption, analyzed in
(Wilinska et al., 2005), (Clausen, De Gaetano & Volund,
2006) and already exploited with the aim of glucose control
in (Hovorka et al., 2004).

The control law proposed in this note is based on recent
results on differential geometry for time-delay systems (see
Germani, Manes & Pepe, 2000, Germani, Manes & Pepe,
2003, Oguchi, Watanabe & Nakamizo, 2002, Marquez-
Martinez & Moog, 2004). Based on a DDE model of the
glucose-insulin system and subcutaneous absorption, in
(Palumbo et al., 2011) the input/output feedback lin-
earization with delay cancellation has been applied with
the aim of tracking a desired glucose profile. That was
a purely theoretical work, since the control law required
a complete knowledge of the state of the system, includ-
ing intra-venous and subcutaneous insulin measurements.
However, insulin measurements are slower, more expensive
and less accurate and, in case of subcutaneous insulin
measurements, they are not accessible at all. To overcome
such a drawback, the present paper proposes the use of
a state observer to estimate in real-time both plasma
insulinemia and the subcutaneous insulin depot. The ob-
server, here adopted to close the loop by using only glucose
measurements, is the one developed in (Germani, Manes
& Pepe, 2001) for nonlinear time-delay systems. The local
convergence of the tracking error to zero is theoretically
proven, and it constitutes the novel and main contribution
of the paper. Preliminary results have been presented
in (Palumbo et al. 2012) by using a different observer,
(Germani & Pepe, 2005), with no proof of convergence.

2. PRELIMINARIES

The model-based control law is achieved by exploiting a
DDE system that couples the glucose-insulin dynamics
(Panunzi, Palumbo & De Gaetano, 2007) to the subcu-
taneous insulin absorption (Puckett & Lightfoot, 1995):

Ġ(t) = −KxgiG(t)I(t) + Tgh/VG,

İ(t) = −KxiI(t) + TiGmaxf
(
G(t− τg)

)
/VI

+S2(t)/
(
VItmax,I

)
,

Ṡ2(t) = S1(t)/tmax,I − S2(t)/tmax,I ,
Ṡ1(t) = −S1(t)/tmax,I + u(t),

(1)

with G(t), [mM], I(t), [pM], plasma glycemia and insuline-
mia, and S1, S2 [pmol] the insulin mass in the accessible
and not-accessible subcutaneous depot, respectively. u(t),
[pmol/min], is the exogenous insulin infusion rate, deliv-
ered subcutaneously, i.e. the control input. The nonlinear
function f(·) models the pancreatic Insulin Delivery Rate.
As far as the model parameters and the shape of f(·), refer
to (Panunzi, Palumbo & De Gaetano, 2007).

Initial conditions are G(τ) = G0(τ), I(τ) = I0(τ), S2(τ) =
S2,0(τ), S1(τ) = S1,0(τ), τ ∈ [−τg, 0]. We assume, without
loss of generality, that the control input acts from t ≥ 0
on, and that the patient’s glucose-insulin system, for at
least t ∈ [−2τg, 0], is at the equilibrium point with zero
input. That is, we assume that the patient is at rest (steady
state solution for plasma glycemia) before the controller is
applied.

The aim of the proposed control law is to design a model-
based subcutaneous insulin infusion in order to reduce a
hyperglycemic state down to a desired, euglycemic one,
Gd. Only glucose measurements are allowed.

According to (Palumbo et al., 2011), by applying the the-
ory of exact input-output feedback linearization with delay
cancellation (see Germani, Manes & Pepe, 2000,Germani,
Manes & Pepe, 2003, Oguchi, Watanabe & Nakamizo,
2002, Marquez-Martinez & Moog, 2004), with respect to
the input u(t) and the output G(t) − Gd, the following
control law is found:

u(t) = VIt
2
max,I

α(·)− v(t)
KxgiG(t)

, (2)

where α(·) is a function of the system variables at the
present time G(t), I(t), S1(t), S2(t), and of some of them
at delayed times (i.e. of G(t − τg), I(t − τg), S2(t − τg)
and G(t − 2τg)). By applying (2) to (1), it comes that
the closed-loop system may be written by using the new
variables z(t) = [G(t) G(1)(t) G(2)(t) G(3)(t)]T as:

ż(t) = Abz(t) +Bbv(t), t ≥ 0, (3)
with Ab, Bb the fourth-order Brunowski pair. Notice
that the equation (3) holds for all t ≥ 0 and not only
after some delay intervals (see Germani, Manes & Pepe,
2000, Germani, Manes & Pepe, 2003). This is obtained
in (Palumbo et al., 2011) by making use of the initial
conditions derivatives for t ∈ [0, τg]. Here, since the patient
is at rest for t ∈ [−2τg, 0], the delay differential equations
in the model (1) are satisfied also for t ∈ [−τg, 0], with
u(t) = 0. In this way, when delayed derivates of the glucose
variable are required in the expression of α(·), we can use
the first two equations in the model (1), at delayed time
t − τg, also when t ∈ [0, τg]. By setting the outer input
v(t) = Γe(t), with e(t) = z(t)− zd, zd = [Gd 0 0 0]T , we
may choose the gain matrix Γ ∈ R1×4 to make Hurwitz
the matrix H = Ab + BbΓ, since the Brunowski pair is
controllable. Therefore, the tracking error between plasma
glycemia and its reference signal converges exponentially
to zero.

Note that, by suitably exploiting the desired glucose level
Gd, the following levels for the state variables are defined:

Id = Tgh/
(
VGKxgiGd

)
,

S2,d =
(
KxiId − TiGmaxf(Gd)/VI

)
VItmax,I ,

S1,d = S2,d, ud = S1,d/tmax,I , (4)
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which have the following meaning. If, given a time instant
t̄ ≥ 0, it is G(τ) = Gd, I(τ) = Id, S2(τ) = S2,d, S1(τ) =
S1,d, for τ ∈ [t̄ − τg, t̄], and the control law u(t) designed
as in (2) is applied, then the solution of (1) is G(t) = Gd,
I(t) = Id, S2(t) = S2,d, S1(t) = S1,d, for t ≥ t̄, and the
control law becomes u(t) = ud, t ≥ t̄. In other words, once
Gd has been chosen, we may compute Id, S2,d, S1,d and ud
(as in (4)) as the reference levels of the system variables
and of the control input that asymptotically correspond
to a perfect tracking of Gd. As a matter of fact, the state
XE = [Gd Id S2,d S1,d]T ∈ R4 is the equilibrium point
of the closed loop system (1)-(2).

The main drawback of such a control law is that it re-
quires both glucose and insulin measurements: on the other
hand, plasma insulin measurements are slower and more
cumbersome to obtain, more expensive, and also less accu-
rate than glucose measurements. Moreover, subcutaneous
insulin measurements are quite impossible to obtain, espe-
cially in a real-time closed-loop framework. An incentive
exists, therefore, to construct a control law avoiding the
need for insulin measures. In order to overcome such a
problem, we consider a state observer for system (1), with
the aim of estimating the insulin on the basis of continuous
time glucose measurements.

3. OBSERVER-BASED CONTROL LAW

Define the vector of variables
X(t) = [G(t) I(t) S2(t) S1(t)]T ∈ R4 (5)

such that the DDE system (1) can be written as:

Ẋ(t) = F
(
X(t), X(t− τg)

)
+Bbu(t), (6)

with F : R4 × R4 7→ R4 coming straightforwardly. The
measured output is, then, given by y(t) = G(t) = CbX(t),
where Cb = [1 0 0 0].

The observer for system (6) here adopted is the one
developed in (Germani, Manes & Pepe, 2001), given by
the following neutral system, with X̂(t), w(t) ∈ R4:

˙̂
X(t) = F

(
X̂(t), X̂(t−τg)

)
+Bbu(t)+w(t), t ≥ 0, (7)

w(t) = Q−1
(
X̂(t), X̂(t− τg)

)(
W
(
y(t)− CbX̂(t)

)
−Q1

(
X̂(t), X̂(t− τg)

)
w(t− τg)

)
. (8)

Matrices

Q
(
X̂(t), X̂(t− τg)

)
=
∂Θ
(
X̂(t), X̂(t− τg)

)
∂X̂(t)

Q1

(
X̂(t), X̂(t− τg)

)
=
∂Θ
(
X̂(t), X̂(t− τg)

)
∂X̂(t− τg)

(9)

are obtained from the partial derivatives of the function
Θ(·, ·) (see Germani, Manes & Pepe, 2001), formally de-
fined as the aggregate of the outputG(t) and its first 3 time
derivatives, obtained according to (1). It comes out that
Θ(·, ·) is a function of the system variables at the present
time (i.e. G(t), I(t), S1(t), S2(t)) and of some of them at
the delayed time (i.e. G(t − τg) and I(t − τg)). When the
function Θ is used for computations in (9), X̂(t) takes the
place of [G(t) I(t) S2(t) S1(t)]T , for any required time t.
The gain matrix W ∈ R4×1 is chosen such that the matrix
Ĥ = Ab −WCb is Hurwitz.

In (Germani, Manes & Pepe, 2001) conditions are given
such that, properly assigning the gain matrix W , the
asymptotic convergence to zero of the observation error
is guaranteed. Such conditions are not completely satisfied
by the system at hand (for instance, the functions involved
in (1) are not globally Lipschitz). Here, however, we are not
interested in the convergence of the observation error to
zero for any bounded input signal, as in (Germani, Manes
& Pepe, 2001), but in the convergence of the state variables
to the desired equilibrium. At that aim, we exploit the
observer equations to close the loop from the observed
state X̂(t), so that the state variables in (2) are replaced
by their estimates. Then, the control law becomes:

u(t) = VIt
2
max,I

α(̂·)− v(t)

KxgiCbX̂(t)
, v(t) = Γ

(
ẑ(t)− zd

)
,

(10)
with ẑ(t) = Θ(X̂(t), X̂(t − τg) and α(̂·) denotes function
α(·) computed in the observed state variables X̂(t), X̂(t−
τg), X̂(t− 2τg), instead of the real ones.

Remark. Since α(̂·) is a function of the state variable
at present and past time, with maximum involved time-
delay equal to 2τg, the closed-loop system (6)-(10) is a
retarded system with delay 2τg as well. Therefore, the
initial conditions for the observer are set as follows (see
Germani, Manes & Pepe, 2001):

X̂(τ) = ζ(τ), ζ ∈ C1([−2τg, 0]; R4) (11)

w(τ) = ζ̇(τ)−F
(
ζ(τ), ζ(τ − τg)

)
, τ ∈ [−τg, 0] (12)

The function ũ(τ), τ ∈ [−τg, 0], involved in (Germani,
Manes & Pepe, 2001), is here useless since Q1(·, ·)Bb = 0.
Indeed, function Θ does not depend of S1(t− τg). •

Notice that XE = [XT
E XT

E ]T ∈ R8 is the equilibrium
point of the observer-based closed-loop system (6)-(10).
Theorem 1. There exist matrices W and Γ such that the
equilibrium point XE of the closed-loop system (6)-(10) is
asymptotically stable.

Proof: The proof is developed by taking into account the
closed-loop system (6)-(10), in terms of new variables (see
z, ẑ below). The path indicated in (Ciccarella, Dalla Mora
& Germani, 1995) for finite dimensional systems will be
followed here. Consider the variables transformation:

z(t) = Θ
(
X(t), X(t− τg)

)
, t ≥ −τg, (13)

ẑ(t) = Θ
(
X̂(t), X̂(t− τg)

)
, t ≥ −τg (14)

According to its structure, Θ can be inverted in order to
write, for t ≥ 0, X(t) (and X̂(t)) as a function of the only
variable z(·) (and ẑ(·)), namely: X(t) = Θ̃

(
z(t), z(t− τg)

)
(and X̂(t) = Θ̃

(
ẑ(t), ẑ(t−τg)

)
). Taking into account of the

hypothesis of patient at rest, for t ∈ [−2τg, 0], the system
dynamics can be written in the z variables, with suitable
functions m1, m2, as (see Palumbo et al., 2011):

ż(t) = Abz(t) +Bb
(
m1(zt) +m2

(
z(t)

)
u(t)

)
, t ≥ 0,

z(τ) = Θ(X(τ), X(τ − τg)), τ ∈ [−τg, 0],

z(τ) = [X1(τ) 0 0 0]T , τ ∈ [−2τg,−τg),
(15)

where X1 is the first component of X and, with a little
abuse of notation:

IFAC ICONS 2013
September 2-4, 2013. Chengdu, China

526



m1(zt) = m1

(
z(t), z(t− τg), z(t− 2τg)

)
,

m2

(
z(t)

)
= −KxgiCbz(t)/

(
VIt

2
max,I

)
(16)

As standard, zt denotes the function in C([−2τg, 0]; R4)
given, for τ ∈ [−2τg, 0], by zt(τ) = z(t + τ) (the same
notation will be used in the following for ẑ, ξ, e, ê). The
values of the second, the third and the fourth components
of the vector z(t), t ∈ [−2τg,−τg) are not needed. For
simplicity they are here set equal to zero, in order to
provide the initial conditions for z in the same interval
as for the variables X, and also in order to avoid non
uniformity of time domain definitions for next introduced
variables (e, ê, ξ). The observed variables ẑ(t) obey to
delay differential equations (instead of neutral differential
equations), as follows (see Germani, Manes & Pepe, 2001):

˙̂z(t) = Abẑ(t) +Bb
(
m1(ẑt) +m2

(
ẑ(t)

)
u(t)

)
+W (Cbz(t)− Cbẑ(t)), t ≥ 0,

ẑ(τ) = Θ(ζ(τ), ζ(τ − τg)), τ ∈ [−τg, 0],
ẑ(τ) = [ζ1(τ) 0 0 0]T , τ ∈ [−2τg, 0], (17)

with ζ1 the first component of ζ. The values of the second,
the third and the fourth components of the vector ẑ(t),
t ∈ [−2τg,−τg) are not needed. For simplicity they are here
set equal to zero, in order to provide the initial conditions
for ẑ in the same interval as for the variables X̂, and,
as stated for the initial condition of the system equations
in z variables, also in order to avoid non uniformity of
time domain definitions for next introduced variables. The
control input (10) becomes, with the introduced notations,
u(t) = p1(ẑt), with:

p1(ẑt) = p1

(
ẑ(t), ẑ(t− τg), ẑ(t− 2τg)

)
= −

(
m1(ẑt)− Γ

(
ẑ(t)− zd

))
/m2

(
ẑ(t)

)
, (18)

so that system (15) becomes:

ż(t) = Abz(t) +Bb

(
m1(zt) +m2

(
z(t)

)
p1(ẑt)

)
(19)

By the theory developed in (Germani, Manes & Pepe,
2001, Germani, Manes & Pepe, 2003, Palumbo et al.,
2011), the following result holds:
m1(ẑt) +m2

(
ẑ(t)

)
p1(ẑt) = Γ

(
ẑ(t)− zd

)
, t ≥ 0. (20)

Taking into account of (20) and (17), we obtain
˙̂z(t) = Hẑ(t)−BbΓzd +WCb(z(t)− ẑ(t)), t ≥ 0, (21)

with H = Ab +BbΓ. Define the errors e(t) = z(t)− zd and
ê(t) = ẑ(t)− zd, t ≥ −2τg. Then, since Abzd = 0, it is:

ė(t) = Abe(t) +Bb
(
q1(et) + q2

(
e(t)

)
p2(êt)

)
˙̂e(t) = Hê(t) +WCbξ(t) (22)

with ξ(t) = e(t)− ê(t) = z(t)− ẑ(t), q1(et) = m1(et + zd),
q2

(
ê(t)

)
= m2

(
ê(t) + zd

)
, p2(êt) = p1(êt + zd) where,

for et + zd (and for êt + zd) is meant the function in
C([−2τg, 0]; R4) given, for τ ∈ [−2τg, 0], as (et + zd)(τ) =
et(τ) + zd (and (êt + zd)(τ) = êt(τ) + zd). Therefore, the
closed loop system in the variables (ê, ξ) becomes:

˙̂e(t) = Hê(t) +WCbξ(t)

ξ̇(t) = Ĥξ(t) +BbL(ξt, êt) (23)

L(ξt, êt) = q1(ξt + êt) + q2

(
ξ(t) + ê(t)

)
p2(êt)

− q1(êt)− q2

(
ê(t)

)
p2(êt) (24)

According to its definition the nonlinear function L in
(24) has 6 entries, namely: l1 = ξ(t), l2 = ξ(t − τg),

l3 = ξ(t−2τg), l4 = ê(t), l5 = ê(t− τg), l6 = ê(t−2τg). By
linearizing the closed loop system (24) around the steady
state [0, 0, 0, 0, 0, 0]T , it is:

˙̂e(t) = Hê(t) +WCbξ(t)

ξ̇(t) = Ĥξ(t) +Bb
(
r0ξ(t) + r1ξ(t− τg) + r2ξ(t− 2τg)

+ r3ê(t) + r4ê(t− τg) + r5ê(t− 2τg)
)

(25)

r0 =
∂L

∂l1

∣∣∣∣
li=0

, r1 =
∂L

∂l2

∣∣∣∣
li=0

, r2 =
∂L

∂l3

∣∣∣∣
li=0

,

r3 =
∂L

∂l4

∣∣∣∣
li=0

, r4 =
∂L

∂l5

∣∣∣∣
li=0

, r4 =
∂L

∂l6

∣∣∣∣
li=0

(26)

with ri ∈ R1×4. Since r3 = r4 = r5 = 0 (it readily comes
from (24)), the linearized time-delay system (25) becomes:

˙̂e(t) = Hê(t) +WCbξ(t) (27)

ξ̇(t) = Ĥξ(t) +Bb (r0ξ(t) + r1ξ(t− τg) + r2ξ(t− 2τg))
In the following it will be shown that there exist matrices
W , Γ such that the linearized system (27) is asymptotically
stable. To this aim, denote λ = {λ1, λ2, λ3, λ4}, with
−∞ < λ4 < λ3 < λ2 < λ1 < 0 the eigenvalues of
Ĥ, chosen by means of matrix W , and let V (λ) be the
Vandermonde matrix associated to λ (see Ciccarella, Dalla
Mora & Germani, 1993). From the second equation of (27),
the evolution of ξ(t) is given by:

ξ(t) = eĤtξ(0)+
∫ t

0

eĤ(t−τ)Bb
(
r0ξ(τ) + r1ξ(τ − τg)

+ r2ξ(τ − 2τg)
)
dτ. (28)

By suitably exploiting the Vandermonde matrix construc-
tion, it is V (λ)Bb = 1I, and

V (λ)eĤtV −1(λ) = eΛt, Λ = diag{λ1, . . . , λ4} (29)
with 1I a column vector of 1’s in R4. Thus, by setting
ψ(t) = V (λ)ξ(t), and by applying the Bellman-Gronwall
lemma (see, e.g., Sastry, 1999), it is:

‖ψ(t)‖ ≤ e
(
λ1+2‖r0‖·‖V −1(λ)‖

)
t‖ψ(0)‖

+
∫ t

0

e

(
λ1+2‖r0‖·‖V −1(λ)‖

)
(t−τ)2‖V −1(λ)‖

·
[
‖r1‖·‖ψ(τ − τg)‖+ ‖r2‖·‖ψ(τ − 2τg)‖

]
dτ
(30)

To complete the proof, it will be shown that ‖ψ(t)‖ is
bounded by a positive function s : [−2τg,+∞) → R+

asymptotically converging to zero. To this aim, define
s(t) = Meρt, M = sup

τ∈[−2τg,0]

‖V (λ)‖·‖ξ(τ)‖ (31)

for some negative real value ρ < 0. Then, it is ‖ψ(t)‖ ≤ s(t)
for t ∈ [−2τg, 0], since:
‖ψ(t)‖ ≤ ‖V (λ)‖·‖ξ(t)‖ ≤ sup

τ∈[−2τg,0]

‖V (λ)‖·‖ξ(τ)‖

= M ≤Meρt = s(t) (32)
Moreover, there exists a negative value for ρ such that s(t)
defined in (31) obeys to the following equality for t ≥ 0:

s(t) = e

(
λ1+2‖r0‖·‖V −1(λ)‖

)
ts(0)

+
∫ t

0

e

(
λ1+2‖r0‖·‖V −1(λ)‖

)
(t−τ)

· 2‖V −1(λ)‖
[
‖r1‖·‖s(τ − τg)‖+ ‖r2‖·‖s(τ − 2τg)‖

]
dτ

(33)
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Indeed, by substituting s(t) in (33) to find the required ρ,
it comes that a negative real solution with respect to the
unknown ρ exists, if the following equation admits negative
real solutions for the unknown ρ:

ρ = b1 + b2e
−ρτg + b3e

−2ρτg , (34)
with

b1 = λ1 + 2‖r0‖·‖V −1(λ)‖,
b2 = 2‖r1‖·‖V −1(λ)‖, b3 = 2‖r2‖· ‖V −1(λ)‖ (35)

that is: if, and only if, the right-hand-side computed for
ρ = 0 is negative, that is, if, and only if:
b1+b2+b3 =λ1+2‖V −1(λ)‖

(
‖r0‖+‖r1‖+‖r2‖) < 0 (36)

Such a condition can always be satisfied by suitably choos-
ing the eigenvalues λ, by means of matrix W (Ciccarella,
Dalla Mora & Germani, 1993). Therefore, by standard
step procedure with step-size equal to τg, it follows that
‖ψ(t)‖ 7→ 0, since:

0 ≤ ‖ψ(t)‖ ≤ s(t) 7→ 0 (37)
Finally, since matrix Γ is such that the eigenvalues of H
are negative real, taking into account the first equation in
(25) we can conclude about the asymptotic stability. 2

4. NUMERICAL SIMULATIONS

Proposed simulations have been carried out on virtual pa-
tients on the basis of model parameter estimates obtained
from data related to an IVGTT experiment conducted
on obese patients (Body Mass Index ' 50), studied at
Catholic University of Rome, Department of Metabolic
Diseases (see Panunzi, De Gaetano & Mingrone, 2010).
These data have been further manually modified in order
to simulate the development of Type 2 diabetes as below
reported (refer to Section 2 for the measurement units):
Gb = 10.66, Ib = 49.29, TiGmax = 0.236
VG = 0.187, Kxi = 1.211× 10−2, τg = 24
VI = 0.25, Kxgi = 3.11× 10−5, Tgh = 0.003
γ = 3.205, G∗ = 9 (38)

The subcutaneous absorption parameter, i.e. tmax,I , has
been taken from (Hovorka et al., 2004). The same set of
parameters has been previously exploited in (Palumbo et
al., 2011), without the use of an observer, and in (Palumbo
et al. 2012), according to a different choice of observer.

The desired reference level of glycemia is set at 5mM.

The gain matrices Γ, W are chosen to assign eigenvalues
−[0.055 0.019 0.029 0.030]T and−5·10−10[4 3 2 1]T

to matrices H and Ĥ, respectively. Initial values for state
variables are G0(τ) = Gb, I0(τ) = Ib, S2,0(τ) = 0,
S1,0(τ) = 0 for τ ∈ [−2τg, 0], while the observer initial
conditions have been set as Ĝ0(τ) = 15, Î0(τ) = 100,
Ŝ2,0(τ) = 5, Ŝ1,0(τ) = 5 for τ ∈ [−2τg, 0]. w(τ) has been
initialized according to (12).

Notice that the control parameters have been chosen in
order not to have a theoretical negative control input
(i.e. negative insulin administration), as it appears from
Fig.2. Fig.1 shows the glucose and insulin concentrations,
compared to their estimated profiles. Notice that the initial
basal hyperglycemia is reduced to a safe level (below
6.5mM) after about 3 hours of closed loop therapy, with
no dangerous oscillations, nor hypoglycemic episodes.

Fig. 1. Plasma glycemia/insulinemia: the actual concen-
tration compared to the estimated one. Blue dotted
lines are desired values for subcutaneous depot.

Fig. 2. Exogenous insulin infusion rate

5. CONCLUSIONS

In this note, a time-delay model-based control law is
proposed to track a desired level of plasma glycemia from
a diabetic hyperglycemic state. The DDE model here
adopted is a minimal model of the glucose insulin system,
that allows a good representation of both Type I and Type
II diabetic patients in a unified fashion. First attempts to
exploit such a model by the authors have been reported in
(Palumbo et al., 2009, Palumbo et al., 2012, A), where
intravenous insulin administration was considered, and
in (Palumbo et al., 2011) where subcutaneous insulin
administration has been considered. The novelty of the
present paper relies in the use of a proper observer to
estimate those state variables which cannot be directly
measured (i.e. insulin in plasma and in the subcutaneous
depot). The main result reported here is the proof of
convergence to zero of the tracking error.
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